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1.0 INTRODUCTION 
 
Steel plates are widely used in buildings, bridges, automobiles and ships. Unlike beams 
and columns, which have lengths longer than the other two dimensions and so are 
modeled as linear members, steel plates have widths comparable to their lengths and so 
are modeled as two-dimensional plane members. 
 
Just as long slender columns undergo instability in the form of buckling, steel plates 
under membrane compression also tend to buckle out of their plane. The buckled shape 
depends on the loading and support conditions in both length and width directions. 
 
However, unlike columns, plates continue to carry loads even after buckling in a stable 
manner. Their post-buckling strengths, especially in the case of slender plates, can thus 
be substantially greater than the corresponding buckling strengths. This property is of 
great interest to structural engineers as it can be utilized to their advantage. 
 
In this chapter, the expression for the critical buckling strength, of a flat plate simply 
supported on all four sides, is derived. The post-buckling behaviour of plates is described 
in terms of both stability and strength and compared with the post-buckling behaviour of 
a column. The concept of effective width is introduced to tackle the non-uniform 
distribution of stress in practical plates before and after buckling. 
 
Buckling of web plates in shear is described and an expression to calculate their ultimate 
capacity is also given for use in design. A plate buckled in shear, can also carry additional 
shear due to the tension field action. Interaction formulas for plates under various load 
combinations are also given.  
 
2.0 CRITICAL STRESS FOR PLATE BUCKLING  
 
2.1 Rectangular flat plate simply supported on four sides 
 
Consider a rectangular perfectly flat plate simply supported on all four sides and 
subjected to uniform compressive force Nx per unit length in the x-direction (Fig.1). The 
equilibrium equation for such a plate is given by 
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where, w denotes the deflection in the z-direction of any point (x,y).   
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Fig.1 Buckling of Plate under Uni-axial Compression  
 
w can be assumed as 
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The m and n in Eq. 2, indicate the number of half sine waves in the buckled mode. It may 
be noted that this assumed shape automatically satisfies the hinged boundary conditions 
for the plate, that is w = 0 at x = 0, x = a, y = 0 and y = b.   
Substitution of Eq. (2) in Eq. (1) gives 
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The lowest value of the membrane buckling stress (Nx)cr, in Eq. (4) is obtained for n=1 
and can also be written as follows,  
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Denoting the quantity within larger brackets by k and noting that the buckling load, Ncr, is 
the product of the buckling stress σcr and the thickness, we get the buckling stress as 
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The expression for the critical buckling stress is similar to the Euler stress for columns 
[σe= π2E/(λ/r)2 ] except for the fact that it is a function of the width-thickness ratio b/t. 
Why should the critical buckling stress in the x-direction be a function of the width b in 
the y-direction? 
 
As the compressive load Nx on the plate is increased and reaches the critical buckling 
load Ncr, the central part of the plate such as the strip AB tends to buckle. Now, if we 
consider a transverse strip CD, we can realize that this strip resists the tendency of the 
strip AB to deflect out of the plane of the plate (z-direction). The shorter the width b, 
more will be the resistance offered by CD to AB. Hence the strip AB until buckling 
behaves like a column on elastic foundation, whose stiffness depends on b. This is the 
reason why the width b figures in the expression for critical buckling stress. 
 
Next, let us consider the influence of the length ‘a’ of the plate on the buckling shape. 
Equation (5) is plotted in Fig. 3, showing the variation of buckling strength with respect 
to b/a ratio and for various values of m.  
 
Consider a plate whose length a is much greater than the width b. If a longitudinal strip 
such as AB in Fig. 1, tends to form a single buckle, its curvature will be much less than 
the curvature of the transverse strip CD which tries to resist the buckling. This means that 
the resistance is greater than the tendency to buckle and the strength corresponding to this 
mode (m=1) is very high. Therefore, the plate prefers to buckle such that the curvatures 
of longitudinal and transverse strips are as equal as possible. This leads to multiple 
buckles in alternate directions as shown in Fig.2 such that the buckles are as square as 
possible. If a = 2b, the plate develops two buckles, if a = 3b, it develops three buckles 
and so on (Fig. 2). 
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Fig. 2 Buckling Modes for Long Plates
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Variation of k, the plate buckling coefficient, with aspect ratio (the ratio of the length, a, 
to the width, b) is shown in Fig. 3 for m=1,2,3, etc. It can be seen that the lowest value of 
the buckling coefficient is obtained for integral values of the aspect ratio. 
Correspondingly square half waves are the buckling mode shapes.  Usually the plates are 
long in practice and for large aspect ratios the buckling coefficient is almost independent 
of the aspect ratio and is equal to the lowest value of 4.0.  Hence the local buckling 
coefficient is taken to be the smallest value, independent of the aspect ratio and equals 
4.0 for the case discussed.  
 

 a/b 1.0           2.0           3.0 

4.0 

 k  m= 3 m = 2 m = 1 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3 k-values for a Simply Supported Plate 
 
2.2 Plates with Other support Conditions 
 
So far, it has been assumed that the plate is free to rotate about the longitudinal edges. 
Other edge conditions are of course possible. Consider for example, a box column made 
up of four plates as shown in Fig. 4 (a). If the flanges are relatively stiff, they would 
prevent the rotation of the corners [Fig. 4 (b)] and the web plate will behave as if its 
longitudinal edges are fixed. In this case, the bending resistance offered by the transverse 
strips such as CD will be considerably more than that of a plate with simply supported 
longitudinal edges and the buckling stress will be larger. If the flanges are also prone to 
buckling, then the corners will rotate as shown in Fig. 4c and the critical buckling stress 
will be the same as that for a plate with simply supported longitudinal edges. Therefore, 
the buckling coefficient is a function of the support condition along the longitudinal 
edges and the type of loading. It can be shown that the expression for the critical buckling 
coefficient is still valid except for the fact that the k values will be different. The k values 
for various common support conditions and loading cases are given in Table 1. 
Additional information can be found in Bulson (1970) and Timoshenko and Gere (1961).  
 
In many rolled sections such as I-sections or channel sections, we find that flanges are 
similar to plates having one longitudinal edge simply supported and the other free. These 
are called outstands as against plate elements having both longitudinal edges simply 
supported (internal elements). From Table 2, we find that k value for outstands is 0.425 
which is roughly one-tenth that for internal elements (k=4). The reason for such a low 
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value is that the transverse strip (such as CD in Fig. 1) simply rotates and offers little 
bending resistance as shown in Fig. 4 (d). 
 

web  

 (c) 

Rotation of 
free edge 

 
flange 

 
 
 

(d) (a)   (b) (e) 
 
 Fig. 4 Plate Elements with Different Edge Conditions  

 
Table 1 Values of k for Different Load and Support Conditions 

 
Load Condition Support Condition Buckling Coefficient, k 

Hinged-hinged 4.00 
Fixed-fixed 6.97 
Hinged-free 1.27 

Uniaxial Compressive 
Stress  (σx) 

Fixed free 0.43 
Hinged-hinged 5.35 Shear Stress (τxy) 

Fixed-fixed 8.99 
 
The edge conditions not only affect the critical buckling stress but also influence the post-
buckling behaviour. For a plate with longitudinal edges (edges parallel to the x-axis in 
Fig. 1) constrained to remain straight in the plane of the plate, the transverse stresses in 
the strip CD will be tensile and has the effect of stiffening the plate against lateral 
deflection. However, if the longitudinal edges are free to pull-in in the y-direction [Fig. 
4(e)], there will be no transverse stresses in the strip CD and the plate will be less stiff 
compared to the previous case. 
 
To ensure that a plate with a given support conditions fails by yielding rather than 
buckling, the corresponding critical buckling stress should be greater than the yield stress.  
Equating the expression given in Eq.(6) to the yield stress, the limiting value of the 
width-thickness ratio to ensure yielding before plate buckling can be obtained as  
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The codes prescribe different limiting values for the b/t ratio of plate elements in 
structural members, in terms C/√fy, where C is a constant. These are dealt with in a 
subsequent chapter on local buckling. 
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3.0 POST-BUCKLING BEHAVIOUR AND EFFECTIVE WIDTH 
 
3.1 Post-buckling Behaviour 
 
Consider a rectangular plate with all four edges simply supported and subjected to 
uniform compression along x-direction (Fig. 1). When the compressive stress equals the 
critical buckling stress σcr, the central part of the plate, such as the strip AB, buckles. But 
the edges parallel to the x-axis cannot deflect in the z-direction and so the strips closer to 
these edges continue to carry the load without any instability. Therefore the stress 
distribution across the width of the plate in the post-buckling range becomes non-uniform 
with the outer strips carrying more stress than the inner strips as shown in Fig. 5(a). 
However, as described before, the transverse strips such as CD in Fig. 1 continue to 
stretch and support the longitudinal strips. This ensures the stability of the plate in the 
post-buckling range. Increasing the axial displacement of the plate will cause an increase 
in the lateral displacement. When the edge stresses approach and equal the yield stress of 
the material, the plate deflection would be vary large and the plate, eventually, can be 
considered to have failed when the stresses in the edge strips reach the yield stress of the 
material.  
 

beff = Effective width

(b) Assumed 

beff/2 beff/2 

(a) Actual 

b 

Fig. 5 Actual and Assumed Stress Distribution in the Post-buckling 
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3.2 Effective Width  
 
To calculate the load carrying capacity of the plate in the post-buckling range, the 
concept of effective width is used. The concept was first proposed by von Karman. He 
realized that as the plate is loaded beyond its elastic buckling load, the central part such 
as strip AB deflects thereby shedding the load to the edge strips. Therefore, the non-
uniform stress distribution across the width of the buckled plate, can be replaced by a 
uniform stress blocks of stress equal to that at the edges, over a width of beff/2 on either 
side where beff is called the effective width of the plate. This effective width can be 
calculated by equating the non-uniform stress blocks and the uniform stress blocks.  
 
The shape of the non-uniform stress block depends on the load and support conditions. 
Therefore a number of formulae are available for calculating the effective width, each 
catering to a particular geometry of the plate. For the plate simply supported on all four 
sides, as the load is increased beyond the critical buckling load, the stress block becomes 
more and more non-uniform. When the stress at the outer strips reaches the yield stress, 
the corresponding effective width can be calculated using Winter’s formula  
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The yield stress fy, multiplied by the effective width gives the ultimate strength of the 
plate approximately.  
 
3.3 Plates with Initial Imperfections 
 
The perfectly flat plate described above represents an ideal condition. In practice, plates 
have initial imperfections, which (for simplicity of calculations) are normally assumed to 
be similar to the buckled shape. The behaviour of practical plates is broadly similar to the 
post-buckling behaviour of perfectly flat plates. However, the stresses across the width 
are non-uniform right from the beginning and so the concept of effective width can be 
applied to them even before the onset of elastic buckling. Other aspects of the behaviour 
of plates with initial imperfections such as stiffness and strength will be described in 
subsequent sections. 
 
4.0 STABILITY AND ULTIMATE STRENGTH OF PLATES 
 
4.1 Stability of Plates 
 
It is interesting to compare the stability of a column and a plate. In the case of an ideal 
column, as the axial load is increased, the lateral displacement remains zero until the 
attainment of the critical buckling load (Euler load). If we plot the axial load versus 
lateral displacement, we will get a line along the load axis up to P = Pcr = Pe (Fig. 7). 
This is called the fundamental path. When the axial load becomes equal to the Euler 
buckling load, the lateral displacement increases indefinitely at constant load. This is the 
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secondary path, which bifurcates from the fundamental path at the buckling load. The 
secondary path for column represents neutral equilibrium. For practical columns, which 
have initial imperfections, there is a smooth transition from the stable to neutral 
equilibrium paths as shown by the dashed line in Fig. 6(a). 
 
The fundamental path for a perfectly flat plate is similar to that of an ideal column. At the 
critical buckling load, this path bifurcates into a secondary path as shown in Fig. 6(b). 
The secondary path reflects the ability of the plate to carry loads higher than the elastic 
critical load. Unlike columns, the secondary path for a plate is stable. Therefore, elastic 
buckling of a plate need not be considered as collapse. However, plates having one free 
edge and simply supported along the other edges (outstands), have very little post-
buckling strength.  
 
 

w

P/Pcr

 Actual paths

Secondary path 
Secondary path 

Fundamental  
 path 

 Actual paths 
corresponding to 
levels of initial 
imperfection 

 w0 w

1.01.0 

P/Pe 

(a) Column (b) Plate 
Fig. 7 Load versus Out-of-plane Displacement Curves 

 
Actual failure load of the columns and plates are reached when the yielding spreads from 
the supported edges triggering collapse and thereafter the unloading occurs. 
 
The axial stiffness of an ideally square flat plate drops suddenly from EA (where A is the 
cross-sectional area and E the elastic modulus) to a smaller value (nearly AE/2) after 
buckling and remains relatively constant thereafter, as shown by the load-axial 
deformation curve in Fig. 8. In the case of practical plates there is a gradual loss of 
stiffness as shown by the dashed line in Fig. 8. 
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Flat plate 

Plates with 
imperfections 

1.0           2.0         3.0

 
 
 
 
 
 
 
 
 
 
 
 
 U/Ucr
 
 Fig. 8 Load versus Axial Deformation Diagram 
 
 
4.2 Strength of Plates 
 
Plate strength curves can also be constructed similar to the column strength curves (Fig. 
9). In the case of ideal columns with low slenderness (i.e. stocky columns), failure is 
expected by squashing at the yield stress. On the other hand, if the ideal column is 
slender, failure will be by buckling at or near the Euler load. Tests on practical columns 
indicate that failure always occurs below the failure load of an ideal column of the same 
slenderness. If the column is stocky, then the yield stress provides an upper bound and if 
the column is slender then the buckling stress provides an upper bound. Also the scatter 
in the test results is considerable particularly in the range of intermediate slenderness 
ratios (√fy/σe = 1.0). 
 
In the case of a flat plate simply supported on all four sides, we can expect failure by 
squashing if the b/t ratio is less than the limiting value given by equation (7). Similarly, 
for b/t ratios larger than the limiting value, failure after buckling at the critical buckling 
stress may be expected. However, tests on practical plates indicate that for large b/t 
ratios, the failure stress is substantially greater than the critical buckling stress. This is 
due to the post-buckling behaviour, which is unique to plates. The load from the middle 
strips gets transferred to the edges and the plate continues to carry higher load in stable 
post-buckling range, until the edges reach the yield stress as described in the previous 
sections. As with columns, the scatter in the test results is considerable in the range of 
intermediate b/t ratios (at fy/σcr = 1.0).  
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Fig. 9 Column and Plate Strength Curves 

 
5.0 BUCKLING OF WEB PLATES IN SHEAR 
 
Rectangular plates loaded in shear such as web plates in a plate girder, also tend to 
buckle. Consider a plate loaded in shear in its own plane as shown in Fig.10. A square 
element in the plate (Fig.10), whose edges are oriented at 45° to the plate edges, 
experiences tensile stresses on two opposite edges and compressive stresses on the other 
two edges. The compressive stress can cause local buckling and as a result the plate 
develops waves perpendicular to them.  
 

 
 

τcr

τcr

Fig. 10 Shear buckling of a plate

 
 
 
 
 
 
 
 
 
 
The critical shear stress at which this form of buckling occurs is given by the same 
formula as that for plate buckling under compression, except that the value for the 
buckling coefficient k is different (Table 1). The buckling coefficient varies with the 
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aspect ratio a/b and increases from 5.34 for an infinitely long panel to 9.34 for a square 
panel. The values given in Table 1 are for the square panels. 
 
Plates buckled in shear also can support additional loads. If we draw imaginary diagonals 
on the plate, the diagonal which gets loaded in compression buckles and cannot support 
additional load. However, the diagonal in tension continues to take more load and the 
plate becomes like a triangular truss with only tension diagonals. This is called tension 
field action.  
 
Formulae based on theoretical and experimental works have been produced which are of 
the form: 
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The first term represents the critical stress of an ideally flat plate and the second term, the 
post-buckling reserve due to the tension field action. In practical webs, the post-buckling 
reserve due to tension field may be several times the critical stress τcr. Web panels are 
also less sensitive to usual imperfections than compression flanges. 
 
The critical load for four-side supported plate subjected to various stress combinations is 
given by the following interaction formula: 
 

  

1
22

,

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

crcrb

b

cr τ
τ

σ
σ

σ
σ (10) 

 
 

 
where, σ, σb and τ are the applied axial compressive, maximum bending compressive and 
shear stress respectively and σcr, σb,cr and τcr are the corresponding critical stresses.  
 
6. 0 CONCLUDING REMARKS 
 
Like columns, plates also undergo instability and buckle under compressive and shear 
stresses. The critical buckling load for a plate depends upon its width-thickness ratio and 
support conditions. However, unlike columns, the post-buckling behaviour of plates is 
stable and plates will continue to carry higher loads beyond their elastic critical loads. 
This post-buckling range is substantial in the case of plates with high width-thickness 
ratios (slender plates).  
 
In the post-buckling range, the stress distribution is non-uniform and the plate fails when 
the maximum stress at the supported edge in the post-buckling range reaches the yield 
stress. So the concept of effective width is used to calculate the strength of the plate. This 
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concept replaces the non-uniform stress distribution by an equivalent uniform stress equal 
to the stress at the edges over a reduced effective width (beff ) of the plate. 
 
In practical plates having initial imperfections, the stress distribution is non-uniform right 
from the start and so the effective width concept can be used even before the inception of 
buckling. Practical plates also posses post-buckling strength and empirical formulas are 
available to estimate their ultimate strength. However, the critical buckling strength of 
three side simply supported plates such as outstands is quite small and their post-buckling 
strength is also negligible.  
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